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Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration
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Numerical simulations of spontaneous flame acceleration are performed within the problem of flame tran-
sition to detonation in two-dimensional channels. The acceleration is studied in the extremely wide range of
flame front velocity changing by 3 orders of magnitude during the process. Flame accelerates from realistically
small initial velocity (with Mach number about 1073) to supersonic speed in the reference frame of the tube
walls. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration
in the quasi-isobaric regime, (2) almost linear increase in the flame speed to supersonic values, and (3)
saturation to a stationary high-speed deflagration velocity. The saturation velocity of deflagration may be
correlated with the Chapman-Jouguet deflagration speed. The acceleration develops according to the Shelkin
mechanism. Results on the exponential flame acceleration agree well with previous theoretical and numerical
studies. The saturation velocity is in line with previous experimental results. Transition of flame acceleration
regime from the exponential to the linear one, and then to the constant velocity, happens because of gas

compression both ahead and behind the flame front.
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I. INTRODUCTION

For a long time, deflagration-to-detonation transition
(DDT) was one of the least understood processes in hydro-
dynamics, nonlinear physics, combustion science and astro-
physics in spite of its extreme importance. During the DDT
process a usual slow flame accelerates spontaneously with
velocity increase by 3 orders of magnitude until an explosion
happens and develops into a self-sustained detonation
[1-10]. In the present work we study the stage of flame ac-
celeration, which is the initial and essential part of DDT in
tubes. The first qualitative explanation of the flame accelera-
tion has been suggested by Shelkin in the 1940s [1,2]. The
Shelkin mechanism involved thermal expansion of the burn-
ing gas, nonslip at the tube walls and turbulence as the main
components of flame acceleration. When a flame propagates
from a closed tube end, burning gas expands and pushes a
flow of the fuel mixture. The flow becomes strongly nonuni-
form because of nonslip at the walls. The nonuniform veloc-
ity distribution makes the flame shape curved, which in-
creases the burning rate and drives the acceleration.
Turbulence provides additional distortion of the flame front
and compensates for thermal losses to the walls. Acceleration
of turbulent flames was observed in numerous experiments
[3-10], still, for a long time there was almost no progress in
the quantitative theoretical understanding of the process be-
cause of the complications related to turbulent burning. De-
spite a century of intensive research, turbulence in general
and turbulent burning in particular belong to the most diffi-
cult problems of modern physics [11-17].

Considerable progress in understanding the flame accel-
eration started recently with the numerical simulations and
the analytical theory supporting each other. The numerical
simulations [18,19] demonstrated the possibility of a laminar
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flame acceleration and the DDT in channels with adiabatic
walls. The analytical theory of laminar flame acceleration in
smooth tubes has been developed and validated by extensive
numerical simulations in Refs. [20-22]. The theory of flame
acceleration [20-22] employed the limit of an incompress-
ible flow, which holds with a good accuracy at the beginning
of the process. For example, a typical value of the laminar
flame velocity Uy for hydrocarbon flames is about 40 cm/s,
which is much smaller than the sound speed c, in the fuel
mixture. Initial values of the Mach number are of the order
of Ma= Uyl cg= 1073, therefore effects of adiabatic gas com-
pression may be neglected at the beginning of flame accel-
eration. The theory [20,21] predicted fast acceleration of
laminar flames in microscale tubes. Recent experiments on
the DDT in ethylene-oxygen mixtures confirmed the theoret-
ical predictions for tubes with diameters about 1 mm [23].
However, the numerical simulations of Refs. [18,24] ob-
tained a much slower regime of flame acceleration in com-
parison with the exponential one found in Refs. [19-21], see
also the discussion in Ref. [25]. The exponential regime was
missed out in Refs. [18,24], because these papers employed
relatively high initial values of the Mach number (about
0.05). High initial values of the Mach number are not quite
realistic; still, they are often used in the simulations of the
DDT to avoid difficulties related to extremely wide range in
the length scales and flame front velocities. By assuming
high initial values of the Mach number, a researcher reduces
the computational time of the DDT modeling considerably,
but loses the details of the flame acceleration process. For
example, in Refs. [18,24], the flame front velocity increased
only by order of magnitude before the explosion, instead of 3
orders of magnitude needed for a slow flame to accelerate to
supersonic speed. Taking an artificially high initial Mach
number may lead to an erroneous conclusion that DDT is
possible without flame acceleration, or to obscure the role of
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flame acceleration. We stress that flame acceleration is a key
process in DDT in tubes. So far there were no attempts to
trace the whole process of flame acceleration in the DDT in
detail for realistically small initial Mach numbers. There was
no systematic investigation of flame acceleration at large val-
ues of the Mach number either. Such a task was performed
only for the quasi-isobaric regime of flame acceleration at
the very beginning of the process [20-22]. This created a
large gap between the theory and the experiments on the
DDT. For example, the experiments [23] demonstrated that
flame acceleration may saturate to a stationary velocity be-
low the Chapman-Jouguet (CJ) detonation speed. The satu-
ration velocity may be interpreted as the CJ deflagration
speed [26,27], which is subsonic with respect to the fuel
mixture just ahead of the flame front and supersonic in the
reference frame of the tube walls. Similar saturation of the
flame propagation speed to a supersonic value with respect to
an observer has been detected experimentally in channels
with obstacles; this regime is often called “fast flames”
[10,28]. The theory and simulations [20,21] did not repro-
duce any of these effects, even qualitatively. So, there has
been a crucial controversy between different results on flame
acceleration in DDT, which had to be resolved.

The purpose of the present work is to investigate system-
atically the flame acceleration in the extremely wide range of
Mach numbers changing by 3 orders of magnitude during the
DDT. We perform numerical simulations of flame accelera-
tion in tubes with smooth nonslip adiabatic walls. The simu-
lations are performed in the two-dimensional (2D) planar
geometry. Flame accelerates from realistically small initial
velocity with Mach number 10 to supersonic speed in the
reference frame of the tube walls. We show that flame accel-
eration undergoes three distinctive stages: (1) initial expo-
nential acceleration in the quasi-isobaric regime similar to
the previous works [20,21]; (2) linear increase in the flame
velocity to supersonic speed with almost constant accelera-
tion; (3) saturation to a stationary high-speed deflagration
velocity. The saturation velocity may be correlated with the
CJ deflagration speed. The acceleration develops according
to the Shelkin mechanism. Results on the exponential flame
acceleration agree well with the previous theoretical and nu-
merical studies [20,21]. The saturation velocity is qualita-
tively in line with previous experimental results [10,23,28].
Transition of flame acceleration regime from the exponential
to the linear one, and then to the constant velocity, happens
because of gas compression both ahead and behind the flame
front.

I1. BASIC EQUATIONS, BOUNDARY AND INITIAL
CONDITIONS, AND PHYSICAL PARAMETERS

We performed numerical simulations of the 2D planar hy-
drodynamic combustion equations including transport pro-
cesses and chemical kinetics
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where Y is the mass fraction of the fuel mixture, e=QY
+CyT is the internal energy, h=QY+C,T is the enthalpy, O
is the energy release in the reaction, Cy, C, are the heat
capacities at constant volume and pressure. We take Cy
=5R,/2m, C,=TR,/2m, where R,~8.31 J/(mol-K) is the
perfect gas constant. We consider a single irreversible
Arrhenius reaction of the first order with the activation en-
ergy E and the constant of time dimension 7. The stress
tensor {;; and the energy diffusion vector g; are
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where w=pv is the dynamic viscosity, Pr and Sc are the
Prandtl and Schmidt numbers, respectively. The gas mixture
is a perfect gas with the equation of state P=pR,T/m and a
constant molecular weight m=2.9 X 1072 kg/mol The adia-
batic exponent of the gas was y=1.4. We consider a flame
propagating in a 2D tube of half-width R with nonslip con-
ditions at the adiabatic walls. The flame propagates from the
closed end of the tube to the open one. We take the initial
pressure and temperature of the fuel mixture Py= 10° Pa and
T=300 K, respectively. The thermal and chemical param-
eters of the fuel mixture were chosen to reproduce the most
important properties of methane and propane laboratory
flames. We took the planar flame velocity U,—O 347 m/s
with the initial Mach number Ma=U//c; =107>. The flame
thickness in our calculations is defined conventionally as
Li=v/ PrU 2 Still, the effective flame thickness is consider-
ably larger, see [24]. Thermal expansion at the planar flame
front ®=p,/p, is determined by the energy release in the
reaction; we took ®@=8 typical for methane and propane
burning. We use the dynamic viscosity u=1.7
% 107> Ns/m? with the Prandtl number Pr=0.75. To avoid
the Zeldovich (thermal-diffusion) instability we take unit
Lewis number Le=Pr/Sc=1. The activation energy was E
:32Rpr

In the present simulations we considered different tube
widths 10L;<2R <30L;. For typical hydrocarbon-air flames
this corresponds to the tube diameters (widths) roughly be-
tween 0.6 to 2 mm. Though being small, these values are
comparable to the tube diameters used in the DDT experi-
ments [23]. Presumably, heat loss to the walls plays a notice-
able role in the DDT in narrow tubes. Still, in the present
paper we study only the case of adiabatic walls.

Similar to our previous papers [20-22], we used the
Zeldovich-Frank-Kamenetsky solution for a planar flame
front as an initial condition. The planar flame front was cre-
ated at a distance 4L, from the closed tube end. We kept
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nonreflecting boundary conditions at the open end of the
tube, though normally shock waves cannot reach open end
due to adaptive mesh refinement. One of the main dimen-
sionless parameters of the problem is defined as Re=RU// v,
and it plays the role of the initial Reynolds number related to
the flame dynamics. Taking into account the formula for the
flame thickness Ly we couple the Reynolds number to the
scaled tube half-width as Re=R/Pr L. By changing the tube
half-width R we varied the Reynolds number. We stress that
the traditional Reynolds number describing the flow, Reg,,,
=2(u)R/v, is different from the present definition Re
=RU,/v. Here, (u) is the flow velocity averaged over the
cross-section. In our simulations the value Reg,, was as
large as 10* and above at the end of the acceleration process,
which produced noticeable turbulence at the explosion stage
of the DDT. Still, no turbulence was detected during the
flame acceleration. We mark that turbulence in a tube flow
with stationary boundary conditions (the Poiseuille flow) de-
velops for Rey,,,>(2-3)-10°. Thus, the present values of
the Reynolds number are not so large, taking into account
that the flow produced by an accelerating flame is nonsta-
tionary. One may also expect difficulties with resolution of
the boundary layer at such values of the Reynolds number.
However, here we stress that the boundary layer ahead of an
accelerating flame is quite different from the classical bound-
ary layer produced by a stationary flow. In the classical case,
thickness of the boundary layer decreases with increase in
the flow velocity (of the Reynolds number) as o1/{u). On
the contrary, the theory and modeling of [20,21] indicate that
thickness of the boundary layer generated by an accelerating
flame is about R/® independent of the Reynolds number,
which may be resolved quite well with the used mesh. Our
present simulations confirm the theoretical estimates, see Ap-
pendix.

III. RESULTS AND DISCUSSION

The purpose of the present paper is to study flame accel-
eration in DDT starting with the realistically small initial
Mach number Ma=U/ c,=107% and finishing with super-
sonic final velocities of the reaction front. We started with a
probe simulation run taking a small value of the Reynolds
number Re=6.67 (corresponding to the tube width 10L;).
Figure 1 presents tip velocity of the reaction front versus
time obtained in the simulation run. The plot demonstrates
(at least qualitatively) all elements of the DDT as described
in the Shelkin scenario. First, the flame front accelerates
from very low subsonic velocities to supersonic speed in the
laboratory reference frame with respect to the tube walls.
Then, we observe an abrupt explosion leading to strong in-
crease in the reaction speed. Finally, the explosion develops
into detonation. Figure 1 gives the idea of the whole process
of DDT. However, in the present work we are interested only
in the first part of the process, namely, in the flame accelera-
tion. The reasons for such limitation are both numerical and
methodological as explained in the Appendix. The dashed
vertical line in Fig. 1 indicates the range of the present nu-
merical quantitative study. The details of the explosion
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FIG. 1. Time dependence of scaled velocity U,/ Uy for Re

=6.67 is shown until full-developed CJ detonation. The dashed ver-
tical line indicates that the range of the quantitative study is limited
by the moment of explosion onset.

process that starts after the designated moment are mostly
beyond the scope of the present work.

Focusing at the process of flame acceleration, we observe
several different stages of the process described below. At
the beginning, the flame accelerates exponentially from real-
istically small velocities with low initial value of the Mach
number Ma=Uy/c,= 1073 typical for hydrocarbon flames. At
the end of the acceleration, we obtained supersonic velocities
of the complex of a curved flame front and shocks in the
laboratory reference frame. For comparison, the analytical
theory and numerical simulations of [20,21] considered only
early stages of flame acceleration with the burning rate in-
creasing approximately 10 times in comparison with the pla-
nar flame velocity. On the contrary, papers [18,24] studied in
detail only final stages of the DDT taking an artificially large
initial Mach number. Here we investigate in detail all stages
of the flame acceleration. We performed simulations for four
values of the Reynolds number within the limits 6.67 <Re
=R/Pr L;<20 corresponding to the tube widths 10L,<2R
< 30L;. Figure 2 shows the characteristic shape of an accel-
erating flame front in a tube with nonslip at the walls: flame
propagates to the right; the left end of the tube z=0 is closed.
For illustrative purposes we used different scales on x and z
axes. The flame front is extremely elongated; on this figure it
stretches on the distance about 220R along the z axis. The
physical mechanism of incompressible flame stretching and
exponential acceleration in tubes with nonslip walls is de-
scribed in details in [20,21].

Figure 3 shows the velocity of the flame tip versus time
for different tube widths (different values of the Reynolds
number). Each velocity graph in Fig. 3 is shown up to the
early stage of the explosion onset, covering only the flame
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FIG. 2. A flame shape in a tube with nonslip at the walls; Re
=6.67, scaled time instant Uft/R=4.57.
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FIG. 3. Time dependence of scaled velocity Uy;,/ Uy for different
values of Reynolds number: Re=6.67;10;13.3. Each velocity graph
is shown until the explosion onset. The lines without markers re-

produce the phenomenological formula Eq. (14).

acceleration and velocity saturation stages of the whole DDT
process. All plots of the figure demonstrate the same features
of flame acceleration. We can recognize three distinctive
stages of the flame acceleration in Fig. 3: (1) at the beginning
flame accelerates exponentially; (2) then the process slows
down to almost constant acceleration; (3) velocity of the
flame tip saturates to a stationary supersonic value. The pur-
pose of the present paper is to make a special emphasis on
these three stages and to investigate their main features.

At the beginning of the acceleration process, the planar
flame starts propagating with velocity ®U, with respect to
the tube walls. Then we observe exponential acceleration of
the flame tip as U,,~@U,exp(oUt/R) in agreement with
[20,21]; the analytical formula for the scaled growth rate o
was found in [20,21] as

_(Re—1)2< [ 4Re® )2
77 4 Re M Re—12 1) 9

Our present results agree well with the previous theory and
simulations, see Fig. 4. The curve in Fig. 4 corresponds to
the analytical formula Eq. (7); empty markers in Fig. 4 show

0 10 20 30 40 50 60

FIG. 4. The acceleration rate o versus the Reynolds number Re.
The solid line presents the theoretical results of Ref. [20]. The
empty and the filled markers present the simulation result of Ref.
[20] and of the present work, respectively.
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FIG. 5. Time dependence of the scaled acceleration aR/ UJ%.

the numerical results of [20]; the filled markers correspond to
the present simulations. In the case of relatively low value of
the Reynolds number, Re=6.67, present numerical results
agree with the theory even better than the numerical data of
[20]. In order to calculate the growth rate o we considered
tip acceleration to the velocities exceeding the initial one by
an order of magnitude, about 100U, in the laboratory frame.

Flame accelerates exponentially until the Mach number
related to the tip velocity reaches approximately Ma,;,
=U,;,/ c;~0.1 (corresponding to U,;,/ Uy~ 100 in the present
simulations). As the velocity of the flame tip approaches the
sound speed, the flow cannot be treated as incompressible
any more. Effects of gas compression modify the regime of
flame acceleration. Figure 3 demonstrates that the initial ex-
ponential regime develops into a different one, which may be
described roughly as linear increase in the flame velocity
with almost constant acceleration a=dU,;,/dt= const. Time
dependence of the scaled acceleration aR/ UJ% is presented in
Fig. 5 for different values of the Reynolds number. All plots
of Fig. 5 demonstrate initial exponential growth of the accel-
eration, which is followed by a rather flat plateau. The pla-
teau corresponds to the regime of almost constant accelera-
tion. Later, the acceleration goes down as the flame velocity
saturates.

Figure 6 shows the maximal scaled value of the flame
acceleration aR/ Uf versus the Reynolds number; the accel-
eration is quite large for all simulation runs 200<aR/UJ%
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FIG. 6. The scaled acceleration aR/U)zc versus the Reynolds
number Re.
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<700. Similar to the exponential regime, constant accelera-
tion is larger in narrower channels. Transition from the ex-
ponential regime to the constant one means slowdown of the
flame acceleration process; the slowdown happens because
of the gas compression. The physical reason of the slowdown
may be understood using the continuity equation, Eq. (1). In
the initial incompressible regime of flame acceleration, ex-
panding gas generates a flow mostly in the fresh fuel mixture
[20,21]. In order to overcome the viscous force and to drive
the flow, the flame has to produce an increased pressure in
comparison with the initial one. At small values of the Mach
number, relative pressure increase is minor in comparison
with the background pressure, and it does not lead to any
noticeable compression of the gas. Using Eq. (1), the bound-
ary conditions at the closed tube end, and taking into account
almost constant density of the burnt gas, we find that burnt
gas remains almost at rest during the initial quasi-isobaric
stage of the acceleration. The whole extra volume produced
in the burning process goes into the flow of the fuel mixture
leading to strong exponential regime of flame acceleration,
see the analytical theory [20,21]. The situation changes as
the flame accelerates to velocities comparable to the sound
speed, i.e., to sufficiently large values of the Mach number
Ma,;,=U,;,/c,. In that case pressure increase produces con-
siderable adiabatic compression of the gas, both ahead of the
flame front and behind the front. Compression of the burnt
gas leads to a flow behind the flame front. As a model, we
can assume an average one-dimensional (ID) flow of the
burnt gas u=€_u, with uniform density depending on time
only, p,=p,(t). Solving the continuity equation and taking
into account the boundary conditions at the tube end, we find
velocity in the burnt gas

uy=— 22 (8)

T opp dt

Equation (8) predicts a compression flow of the burnt gas in
the negative direction, toward the closed tube end. The flow
may be rather strong at the back side of the flame front as it
moves far from the closed tube end. This flow tends to drift
the flame front in the negative direction, i.e., it works against
the flame acceleration. The influence of gas compression on
flame acceleration has been discussed recently in [29],
though in a different context of the DDT in channels with
obstacles. Gas compression may be observed directly in Fig.
7 both behind the flame front and ahead of the front. Figure
7 presents density profile along the channel axis at different
time instants. Compression of the burnt gas behind the front
is relatively uniform in agreement with the above model. On
the contrary, in the fresh fuel mixture we can see a nonuni-
form adiabatic compression wave pushed by the flame.
When the flame tip reaches the distance about Z;,
~3.10°R from the closed end of the tube, density of the fuel
mixture in the compression wave is approximately three to
four times larger than the initial value. Maximal possible gas
compression in a shock wave may be (y+1)/(y—1), see
[26], which equals 6 in the present case. Figure 8 shows
scaled distribution of z velocity along the tube axis for the
same time instants as Fig. 7. We can see the region of nega-
tive velocity behind the flame front, which tends to slow-
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FIG. 7. Scaled density distribution along the channel axis for
Re=6.67 at different time instants. Time instants are equally spaced
in the range of (0-3.8)Uyt/R. The plot emphasized by bold corre-
sponds to Us/R=3.28.

down the acceleration. In agreement with Eq. (8), absolute
value of the negative velocity increases almost linearly with
distance from the closed end of the tube. Velocity distribu-
tion along the tube axis ahead of the flame front is controlled
mostly by the compression wave and by the shock dynamics.
Flow velocity is not uniform in the transverse direction
(along the x axis) either. Velocity profile over the tube cross-
section is determined by the nonslip boundary conditions and
by the regime of flame acceleration. The theory [20] pre-
dicted the velocity distribution in the incompressible expo-
nential regime as

coshVo Re — cosh(xVo Re/R)

cosh \'/0 Re-1

. 9)

u,= Uaxis

In the stationary regime one should expect the Poiseuille
velocity profile u,=U,;(1-x?/R?). Figure 9 compares the
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FIG. 8. Scaled velocity distribution along the channel axis for
Re=6.67 at the same time instants as in Fig. 7.
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~
Poiseuille
> flow

FIG. 9. The velocity profile u, at the cross-section just ahead of
the flame front scaled by the amplitude U,,,,. The solid lines shows
the theoretical result Eq. (9) and the Poiseuille profile. The markers
correspond to the simulation results for Re=6.67, at the time in-
stants Ut/ R=0.47;2.58;4.8 (triangles, circles and crosses). The ar-
rows illustrate the direction of the flow.

theoretical predictions to the numerical data at the time in-
stants Uft/R=0.47;2.58;4.8 (triangles, circles and crosses)
corresponding to the exponential and linear regimes of flame
acceleration, and to quasistationary supersonic burning. The
theory [20] predicted the transitional layer ahead of an accel-
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erating flame of the width about R/®. This width depends
slightly on the Reynolds number of the flow, which makes a
qualitative difference from the classical boundary layer pro-
duced by a stationary uniform flow. Figure 9 demonstrates
that the theoretical estimates of [20] work quite well even at
later stages of flame acceleration. Similar to the modeling of
Ref. [20], the velocity profile in the exponential regime (Fig.
9, triangles) agrees quite well with the theory, Eq. (9). The
velocity profile in the linear regime (circles) is an intermedi-
ate case between Eq. (9) and the Poiseuille profile. Surpris-
ingly, the velocity profile in the stationary regime (crosses) is
closer to Eq. (9) than to the Poiseuille flow. This effect may
be understood from the three-dimensional (3D) representa-
tion of the flow velocity u, shown in Fig. 10. The time in-
stants Ugt/R=0.7;3.12;3.94;4.71 chosen in Fig. 10 corre-
spond to the exponential regime of flame acceleration (a), to
the linear regime before shock formation (b), to the linear
regime after shock formation (c), and to the stationary super-
sonic flame propagation (d). Here, we can see dynamics of
the compression wave and development of the shock. The
shock front is almost planar, and it leads to the velocity
jump, which is uniform in x direction just behind the shock.
On the other hand, the boundary conditions require zero ve-
locity at the walls. In that case one should expect relaxation
of the gas velocity from the uniform flow to the Poiseuille
flow at sufficiently large distances behind the shock. The
expected velocity relaxation resembles the effect of the entry

—T

1000

500

5000

FIG. 10. (Color online) 3D representation of the flow velocity u, for Re=6.67, at the time instants U 't/ R=0.7;3.12;3.94;4.71, figures

(a), (b), (c), and (d), respectively.
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FIG. 11. Increase in the scaled density p/p, versus time just
ahead of the flame front at the channel axis and at the walls. The
dashed line presents the theoretical result Eq. (10).

length of the Poiseuille flow in pipes and channels. Still, in
the present case the distance available for the velocity relax-
ation is limited by the distance between the shock and the
flame front. This distance is not sufficiently large for com-
plete relaxation. The fuel mixture is consumed by the flame
front before relaxation to the Poiseuille flow happens, and
the velocity profile remains quite different from the Poi-
seuille one, see Fig. 9. Figure 10 illustrates also the negative
compression flow in the burnt matter, which is minor in the
plot (a) and quite strong in the plots (b)—(d).

Density and temperature of the fuel mixture ahead of the
flame front become also nonuniform as local Mach number
increases. Density variations along the channel axis are de-
termined mostly by the spatial structure of the compression
wave. Nonuniformity along the channel cross-section devel-
ops due to viscous heating. An interesting question in that
context is the role of viscous heating and generation of en-
tropy in the flow. The isentropic approximation is the basis
for the classical theory of 1D compression flows [26]. The
same approximation was used in [25] to describe detonation
triggering by an accelerating flame. As long as the flow re-
mains quasiplanar and quasi-isentropic, density in the fuel
mixture increases because of the compression wave as [26]

Z1 gy \2
LaN et (10)
Po 2 Cg

The 1D theory may be compared to the simulation results
substituting the flow velocity at the channel axis just ahead
of the flame front into Eq. (10). Figure 11 shows density
increase along the axis and at the walls versus time, as well
as the predictions of the isentropic theory, Eq. (10). Figure
12 presents the same values versus the Mach number of the
flame tip, Ma,;,=U,;,/c,. It is interesting that the isentropic
relation Eq. (10) holds with a good accuracy at the channel
axis up to the sonic point Ma,,~1 and about, when the
leading shock is rather weak. It is well-known that a shock
produces entropy; a shock is the only source of entropy
within the 1D theory without dissipations. Still, in the case of
weak shocks, entropy jump scales as cube of the pressure
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FIG. 12. Increase in the scaled density p/p, just ahead of the
flame front at the channel axis and at the walls versus Mach number
Ma,;,=U,;,/ c;. The dashed line presents the theoretical result Eq.
(10).

tip

jump, AS/Syx(AP/Py)’, see [26], which makes weak
shocks almost isentropic. In the present simulations the isen-
tropic approach is violated noticeably earlier than a strong
shock develops. Entropy in the flow is produced by viscous
heating at the tube walls similar to the results of Ref. [24].
Paper [24] demonstrated both theoretically and numerically
that viscous heating becomes important as the Mach number
of the flow approaches unity. Figures 11 and 12 show that
density at the wall is noticeably smaller than density at the
axis. This happens because of additional heating of the fuel
mixture at the walls due to the viscous stress. Additional
heating and density decrease become especially strong in the
late regime of stationary supersonic burning.

During the regime of almost constant acceleration, the
flame passes the sound barrier, which is 103U 1 in the present
simulations, and propagates with supersonic velocity with
respect to the tube walls, see Fig. 3. This does not contradict
the general idea that flame (deflagration) is a subsonic com-
bustion wave since flame velocity does remain subsonic with
respect to the compressed fuel mixture. It is only the com-
plex of flame-compression (shock) wave, which moves su-
personically in the laboratory reference frame. The regime of
almost constant flame acceleration is also limited in time. In
our simulations we observed saturation of the flame tip ve-
locity to the values about 2-103U /=2c,. One should expect
such an effect already from the basic theory [26], see also
[27], since flame velocity cannot exceed the CJ deflagration
speed. In the limit of large energy release ®>1, the CJ
deflagration speed in the laboratory reference frame may be
evaluated as [27]

B wy-1) 0-1
UCJ—CS[1+2(’Y+1):|\/2Y+1. (11)

In the present case of @=8, y=1.4 this provides an evalua-
tion Ug;~2.68c, for the CJ deflagration speed with respect
to the tube walls. The saturation velocity of the flame tip
observed in the present simulations is smaller, still, it is com-
parable to the CJ velocity. The difference between the clas-
sical theory and the present simulations is, presumably, due
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to the nonslip boundary conditions at the walls, which pro-
duce viscous dissipations of the kinetic energy, a nonuniform
velocity profile behind the shock and a strongly bend flame
front. We remind that the classical theory [26] is limited to
the 1D flow without losses, with uniform velocity and a pla-
nar flame. At the same time, the present numerical results are
in a good agreement with the saturation velocity of “fast
flames” observed experimentally in propane-air mixtures
[10,28]. Using Eq. (11) with ©®=8, y=1.4 typical for
propane-air flames, one should expect the CJ deflagration
velocity with respect to the walls Uq;=~2.68c,~930 m/s.
The experiments [10,28] demonstrated a noticeably lower
saturation velocity of the “fast flames” within the range of
600-750 m/s (one observes considerable scattering of the
experimental data in [10,28]). These values are quite close to
the present numerical data for the saturation velocity 2c,
~700 m/s. Still, one should take this agreement with cau-
tion keeping in mind considerable difference in the flow ge-
ometry of the present numerical study and the experiments
[10,28].

Qualitatively, all regimes of flame acceleration found in
the present work may be understood using the following sim-
plified model. At the initial incompressible stage of the ac-
celeration, flame dynamics is described by a differential
equation

du, p U
. JUUtip > (12)
dt R

with o determined by Eq. (7). As we discussed above, com-
pression effects reduce the acceleration rate. Then, in the
limit of small compression Ma<< 1, the differential equation
for the tip velocity modifies as

dU,, U U,
—2 ==Ly, | 1 - aMa—"2 |, (13)
dt R Uy

where « is some factor depending on the Reynolds number
and on the expansion factor ®. Equation (13) is Taylor ex-
pansion up to the first order in power of Ma<<1. Solving Eq.
(13), we find flame acceleration in the form

Uip exp(aU/t/R)

U 1+aMa® exp(cU/R)’

(14)

The solution Eq. (14) reproduces qualitatively all regimes of
the flame acceleration found in our numerical simulations:
initial exponential acceleration, asymptotic saturation to a
stationary velocity U,,=U;/aMa=c,/a, and the transmonal
regime with an almost constant acceleration value aR/U

=~ g/(4aMa). One is tempted to use a formula like Eq. (146
to describe the simulation results even quantitatively. In that
case, we may use the saturation velocity value U, from the
simulations in order to determine the unknown factor a. Re-
spective phenomenological plots for the flame velocity are
shown in Fig. 3. Unfortunately, the phenomenological guess
does not agree quantitatively with the simulation results, and
a simple formula Eq. (14) provides only qualitative under-
standing of all regimes of flame acceleration.
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FIG. 13. The sketch of the grid with variable resolution used in
numerical simulations.

IV. SUMMARY

In the Introduction, we pointed out a considerable gap,
which was between the theoretical and/or numerical results
[20,21] and the experimental data [9,10,23] on the flame ac-
celeration in the DDT. There was also controversy between
different numerical results on the subject [18-21,24]. This
controversy happened because the numerical studies were
rather fragmentary so far and/or of limited validity; they ad-
dressed different stages in the flame acceleration taken sepa-
rately. In the present work we considered the whole process
of flame acceleration in the DDT. We investigated systemati-
cally the flame acceleration in the extremely wide range of
Mach numbers changing by 3 orders of magnitude. Flame
accelerates from realistically small initial velocity with Mach
number about 107 to supersonic speed in the reference
frame of the tube walls. We show that flame acceleration
undergoes three distinctive stages: (1) initial exponential ac-
celeration in the quasi-isobaric regime similar to the previous
works [20,21]; (2) linear increase in the flame velocity to
supersonic speed with almost constant acceleration; (3) satu-
ration to a stationary high-speed deflagration velocity. The
saturation velocity may be correlated with the CJ deflagra-
tion speed; it is supersonic in the reference frame of the tube
walls. Results on the exponential flame acceleration agree
well with the previous theoretical and numerical studies

6000 |
—— Re=6.67, 0.125L;
- = - Re=6.67,0.25L
|| ’ f
30001 — —Re=6.67,05L
Re=10.0, 0.125L;
----- Re=10.0. 0.25L
|| f
00T Re-100,05L,
~ ——Re=133,0.125L;
= = = Re=133,025L;
£3000 >0
N — Re=133,0.5L;
2000
1000
0
0 1 2 3 4 5 6

FIG. 14. Position of the flame tip versus time for different val-
ues of the mesh size and Reynolds number. Midthick lines corre-
spond to Re=6.67, thin lines to Re=10.0, and thick lines to Re
=133
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TABLE 1. Resolution tests for Re=6.67. Az, is the spatial step in the flame grid domain, #.U;/R=4.8 is
the reference time moment after the end of flame acceleration (velocity saturation stage), Z./R and U../ U ¢ are
the flame tip position and saturation velocity, respectively, at the time moment t.. AZ,/R and AU,/ Uy are the
increments of Z./R and U,/ Uy calculated in the table row i as AZ,(i)=Z.(i)~Z.(i-1) and AU.(i)=U.(i)
—U.(i-1). Resolution in the wave grid domain Az, =2X Az, for each run.

Azs/Ly Z./R AZ./R U./ Uy AU/ Uy AU./U,
0.5 4337.6 1982.9

0.25 4660.9 3233 2024.5 41.6 2.05%
0.125 4743.3 82.4 2028.9 4.4 0.22%

[20,21]. The saturation velocity is in line with previous ex-
perimental results [10,23,28]. Transition of flame accelera-
tion regime from the exponential to the linear one, and then
to the constant velocity, happens because of gas compression
both ahead and behind the flame front.

An interesting question, which is not addressed in the
present paper, concerns influence of heat loss to the walls on
the DDT. Experiments [23] on the DDT in microscale tubes
indicate that losses can bring a wider variety of different
regimes in the DDT including stationary CJ deflagration
without explosion and complete detonation failure. In the
present work we do not consider losses, since careful study
of these effects requires a paper as large as the present one.
Investigation of the DDT in presence of losses is left for the
future work.

ACKNOWLEDGMENTS

The authors are grateful to Leonid Kagan for useful dis-
cussions. This work has been supported by the Swedish Re-
search Council (VR) and by the Kempe Foundation. Numeri-
cal simulations were performed at High Performance
Computer Center North (HPC2N), Umed, Sweden, within
SNAC Project No. 007-07-25.

APPENDIX: NUMERICAL METHOD, RESOLUTION
TESTS, AND NUMERICAL CHALLENGES

In our present simulations, we use a 2D planar hydrody-
namic Eulerian code accounting for chemical reactions. The
code is based on the cell-centered finite-volume scheme,

which appears to be rather robust and accurate for modeling
of different kinds of complex hydrodynamic flows [30-32].
The original code was developed for aeroacoustic applica-
tions, which are extremely critical in terms of accuracy, since
both the turbulent flow and the resulting acoustic waves have
to be captured. For example, the jet noise predictions [30,31]
demonstrated very good results comparable with the best in
the field. It was utilized successfully in studies of laminar
and turbulent burning, hydrodynamic flame instabilities,
flame acceleration, flame-sound interaction, and similar phe-
nomena, e.g., see [17,16,20-22] and references therein.
Present studies require that the code provides proper han-
dling of shock waves and chemical fronts, which is crucial
for reliable modeling of flame evolution and DDT.

The usual approach is to treat the convective flux approxi-
mations and the diffusive flux approximations separately be-
cause of different nature of these fluxes. For the convective
fluxes we use a characteristic upwind flux scheme in which
the propagation directions of the various characteristic vari-
ables are controlled by a user-given degree of up-winding.
The numerical errors introduced by using this approximation
are of the third order in the grid spacing assuming a smooth
solution. Since in our problem most spatial scales are ad-
equately resolved in the computational grid, we use an ex-
tremely small amount of upwinding, which gives us an al-
most fourth-order centered scheme with minimal numerical
dissipation and dispersion. The numerical scheme is of the
second order in space for diffusive terms; second-order ac-
curacy in time is achieved by employing explicit Runge-
Kutta temporal scheme. The total variation diminishing
(TVD) limiter is applied in regions of high gradients to pre-
vent overshoots in flow field properties for proper shock han-
dling.

Multidimensional numerical simulation of flame accelera-
tion and the DDT in a semi-infinite tube is a quite difficult

TABLE II. Resolution tests for Re=10.0. £.Us/ R=6.0 is the reference time moment after the end of flame
acceleration (velocity saturation stage), other notations are the same as in Table 1. Resolution in the wave grid

domain Az,,=2X Az for each run.

Az/Ly Z./IR AZ./R U./U; AU/ U, AU/ U,
0.5 5821.8 1920.8

0.25 6080.2 258.4 1930.1 9.3 0.48%
0.125 6139.6 59.4 1932.3 22 0.11%
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TABLE III. Resolution tests for Re=13.3. t.Us/ R =6.9 is the reference time moment after the end of
flame acceleration (velocity saturation stage), other notations are the same as in Table I. Resolution in the

wave grid domain Az, =2 X Az, for each run.

Az/Ly Z./R AZ.IR U,/ Uy AU.IU; AU,/U,
0.5 6574.3 1868.3

025 6909.8 335.5 1878.2 9.86 0.53%
0.125 6992.7 82.9 1880.8 2.63 0.14%

numerical task [33]. This problem involves a large range of
different length and time scales related to the inner flame
structure, to the elongated shape of the flame front, a large
distance between the flame and the leading shocks, a thin
layer of viscous heating close to the wall, fast development
of the explosion, possibility of turbulence, interaction of
shock waves and, finally, length and time scales related to
detonation. All these scales require proper resolution in one
simulation run. Particularly, we had to use the mesh with
variable resolution in order to take into account the growing
distances between the tube end, the accelerating flame and
the shocks, and to resolve both chemical and hydrodynamic
spatial scales. Typical computational resources for one such
simulation required up to 5 X 10° processor hours, which re-
quired the use of parallel calculations.

We use a rectangular grid with the grid walls parallel to
the coordinate axes. The sketch of the calculation grid is
shown at Fig. 13. The tube length exceeds the tube radius
significantly, reaching 1.2 X 10*R at the end of the simulation
runs. To perform all the calculations in a reasonable time, we
made the grid spacing nonuniform along the z axis with the
zones of fine grid around the flame and leading shock fronts.
In the flame and shock wave domains the grid size in z
direction was, correspondingly, 0.25Lf and O.SLf for main
calculation runs, which allowed us to resolve the internal
structure of the flame and shock waves, e.g., see our previous
tests in [34]. Outside the region of fine grid the cell size
grows gradually with =2% change in size between the
neighboring cells. In order to keep the flame and shock
waves in the zone of fine grid we implemented the periodical
mesh reconstruction during the calculation run. Splines of
the third order are used for reinterpolation of the flow vari-
ables during periodic grid reconstruction. Along the x axis
we used a uniform grid, which allowed us to resolve quite
well the zone of large velocity gradients close to the walls.

In order to check if the used resolution is sufficient, we
performed the resolution tests for Re=6.67,10.0,13.3. For
all cases, the grid size in flame domain varied between
0.125Lf, O.25Lf, and O.5Lf. We checked the position and ve-
locity of the flame tip at particular chosen time instants
t*Uf/R:4.80,6.0,6.9 for Re=6.67,10.0,13.3, respectively,
corresponding to the stage of flame velocity saturation. The
resolution test results are presented in Table I (Re=6.67),
Table 1T (Re=10.0), Table III (Re=13.3), and Fig. 14. Both
the tables and the figure show good convergence of the nu-
merical solution at the flame acceleration and saturation
stages.

As one can see from the Figs. 7 and 8, there are small
numerical oscillations of density and velocity at the leading
shock wave front, which are not totally eliminated by the
applied TVD-limiting. In order to check if these oscillations
can affect the saturation flame velocity, we performed an
additional set of resolution tests for the leading shock wave
domain, which is presented in the Table IV. We took initial
Mach number Ma=0.01 in order to obtain saturation velocity
faster. The resolution tests show that by increasing the wave
domain resolution we obtain only minor changes in the satu-
ration velocity, and the resolution values employed in main
simulation runs are adequate. In runs of Table IV the reso-
lution in flame domain is kept constant, while in runs of
Tables I-III resolution values in flame and shock wave do-
mains change together. Comparison of relative change in
saturation velocity AU, /U, for all resolution tests in Tables
I-IV shows that resolution in shock wave domain has
smaller influence on saturation velocity than that in flame
domain.

The main conclusion of the tests is that the used reso-
lution allows to capture quite well all important features of
flame acceleration investigated in this paper.

In the present work the quantitative studies are concen-
trated on the first part of the DDT process, namely, on the

TABLE 1V. Resolution tests for shock wave domain, Re=6.67, flame domain resolution Azf/ Lf=0.5,
initial Mach number Ma=0.01. Az,, is the spatial step in the wave grid domain, .U,/ R=4.8 is the reference
time moment after the end of flame acceleration (velocity saturation stage), other notations are the same as in

Table 1.
Azw/Lf Z./R AZ./R U./ Uy AU*/Uf AU,/ U,
1.0 562.36 201.19
0.5 569.28 6.92 201.56 0.37 0.18%
0.25 572.05 2.77 201.69 0.13 0.06%
0.125 572.22 0.17 201.73 0.04 0.02%
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flame acceleration and velocity saturation. The flow remains
laminar in the whole range of flame acceleration, which is
covered by the resolution tests. Particularly, for Re=6.67,
convergence is demonstrated up to the scaled time instant

PHYSICAL REVIEW E 80, 036317 (2009)

Ust/R=4.3, for Re=10.0 up to the scaled time instant
Uft/R=6.0, for Re=13.3 up to the scaled time instant
Ujt/R=6.9. At later time moments the process of explosion
starts gradually.
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